Конденсаторы общего назначения – конденсаторы, применяемые в большинстве видов радиоэлектронной аппаратуры. К конденсаторам этого вида не применяются особые требования. Конденсаторы специального назначения – это все остальные конденсаторы. К ним относятся: импульсные, высоковольтные, пусковые, помехоподавляющие, а так же и другие конденсаторы.


Конденсаторы постоянной емкости – это конденсаторы, чья емкость является фиксированной и в процессе эксплуатации аппаратуры не меняется. Конденсаторы переменной емкости – применяются в цепях, где требуется изменение емкости в процессе эксплуатации. При этом изменение емкости может производится различными способами: механически, путем изменения управляющего напряжения, изменением температуры окружающей среды.


Незащищенные конденсаторы – вид конденсаторов, который не допускают к работе в условиях повышенной влажности. Возможно эксплуатация этих конденсаторов в составе герметизированной аппаратуры. Защищенные конденсаторы – могут работать в условия повышенной влажности.


Неизолированные конденсаторы – при использовании этого вида конденсаторов не допускается касания их корпусом шасси аппаратуры. Изолированные конденсаторы – имеют хорошо изолированный корпус, что делает возможным касания шасси аппаратуры или ее токоведущих поверхностей. Уплотненные конденсаторы – в конденсаторах этого вида используется корпус, уплотненный органическими материалами. Герметизированные конденсаторы – эти конденсаторы имеют герметизированный корпус, что исключает взаимодействие внутренней конструкции конденсатора с окружающей средой.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

МИ НИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГБПОУ «Технологический колледж им. Н.Д.Кузнецова» СПЕЦИАЛЬНОСТЬ ИНФОРМАЦИОННЫЕ СИСТЕМЫ Презентация по физике на тему: «Конденсаторы» Подготовил: студент 1 курса Видясова Виктория Сергеевна Научный руководитель: Курочкина Ольга Васильевна Самара, 2016 год.

2 слайд

Описание слайда:

Введение: Определение Виды конденсаторов Маркировка конденсаторов Применение конденсаторов

3 слайд

Описание слайда:

ОПРЕДЕЛЕНИЕ Конденсатор - это электрический (электронный) компонент, построенный из двух проводников (обкладок), разделенные между собой слоем диэлектрика. Различают много видов конденсаторов и в основном они делятся по материалу самих обкладок и по виду используемого диэлектрика между ними.

4 слайд

Описание слайда:

Виды конденсаторов Бумажные и металлобумажные конденсаторы У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки, является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик. Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.

5 слайд

Описание слайда:

Электролитические конденсаторы В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом. Но, на самом деле, к электролитическим так же относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности. В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа. К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.

6 слайд

Описание слайда:

Алюминиевые электролитические конденсаторы В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al2O3), Свойства: они работают корректно только на малых частотах имеют большую емкость Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру. Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.

7 слайд

Описание слайда:

Танталовые электролитические конденсаторы Это вид электролитического конденсатора, в которых металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta2O5). Свойства: высокая устойчивость к внешнему воздействию, компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя, меньший ток утечки по сравнению с алюминиевыми конденсаторами.

8 слайд

Описание слайда:

Полимерные конденсаторы В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечки заряда. Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах. Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.

9 слайд

Описание слайда:

Пленочные конденсаторы В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC). Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS). Общие свойства пленочных конденсаторов (для всех видов диэлектриков): работают исправно при большом токе имеют высокую прочность на растяжение имеют относительно небольшую емкость минимальный ток утечки используется в резонансных цепях и в RC-снабберах Отдельные виды пленки отличаются: температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната) максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола) устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.

10 слайд

Описание слайда:

Конденсаторы керамические Этот вид конденсаторов изготавливают в виде одной пластины или пачки пластин из специального керамического материалла. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства. Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч, и такая величина имеется только у керамических материалов) Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками. Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса - данный вид конденсаторов имеет особую маркировку.

12 слайд

Описание слайда:

Как маркируются большие конденсаторы? Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10-6 фарад.

13 слайд

Описание слайда:

При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10-3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10-9 Ф и пикофарадах (пФ), составляющих 10-12 Ф. Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

14 слайд

Описание слайда:

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов. В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 - (6000 х 0,7).

15 слайд

Описание слайда:

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения. При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

16 слайд

Описание слайда:

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения. Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

17 слайд

Описание слайда:

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание. Прочие маркировки. Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.

19 слайд

Описание слайда:

Применение конденсаторов. Энергия конденсатора обычно не очень велика – не более сотен джоулей. К тому же она не сохраняется из-за неизбежной утечки заряда. Поэтому заряженные конденсаторы не могут заменить, например, аккумуляторы в качестве источников электрической энергии. Конденсаторы могут накапливать энергию более или менее длительное время, а при зарядке через цепь малого сопротивления они отдают энергию почти мгновенно. Именно это свойство используют широко на практике. Лампа- вспышка, применяемая в фотографии, питается электрическим током разряда конденсатора, заряжаемого предварительно специальной батареей. Возбуждение квантовых источников света – лазеров осуществляется с помощью газоразрядной трубки, вспышка которой происходит при разрядке батареи конденсаторов большой электроемкости. Однако основное применение конденсаторы находят в радиотехнике…

20 слайд

Описание слайда:

9 класс 5klass.net

Слайд 2

Цель урока:

Сформировать понятие электроемкости; Ввести новую характеристику – электроемкость конденсатора, и ее единицу измерения. Рассмотреть виды конденсаторов и где они применяются

Слайд 3

Повторим… 1 вариант 1) Кем и когда была создана теория электромагнитного поля и в чем заключается ее суть. 2) Перечислите виды электромагнитных волн. Инфракрасное излучение, его свойства и влияние на организм человека. 2 вариант 1) Что называют электромагнитной волной?. Какими основными свойствами обладает электромагнитная волна? 2) Перечислите виды электромагнитных волн. Рентгенвоское излучение, его свойства и влияние на организм человека.

Слайд 4

Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Электроемкость конденсатора равна где q – заряд положительной обкладки, U – напряжение между обкладками. Электроемкость конденсатора зависит от его геометрической конструкции и электрической проницаемости заполняющего его диэлектрика и не зависит от заряда обкладок. Конденсатор

Слайд 5

Электроёмкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между этим проводником и соседним. Единица измерения ёмкости – фарад – [ Ф ] Это надо знать:

Слайд 6

Электроемкость плоского конденсатора равна где S– площадь каждой из обкладок, d– расстояние между ними, ε – диэлектрическая проницаемость вещества между обкладками. При этом предполагается, что геометрические размеры пластин велики по сравнению с расстоянием между ними. Запомните, что…

Слайд 7

Энергия конденсатора

W = qU/2 W=q2 /2C U

Слайд 8

Типы конденсаторов

Слайд 9

В настоящее время широко применяются бумажные конденсаторы для напряжений в несколько сот вольт и ёмкостью в несколько микрофарад. В таких конденсаторах обкладками служат две длинные ленты тонкой металлической фольги, а изолирующей прокладкой между ними – несколько более широкая бумажная лента, пропитанная парафином. Бумажной лентой покрывается одна из обкладок, затем ленты туго свёртываются в рулон и укладываются в специальный корпус. Такой конденсатор, имея размеры спичечного коробка, обладает ёмкостью 10мкФ (металлический шар такой ёмкости имел бы радиус 90км). Бумажный конденсатор

Слайд 10

Керамический конденсатор В радиотехнике применяют керамические конденсаторы. Диэлектриком в них служит специальная керамика. Обкладки керамических конденсаторов изготавливаются в виде слоя серебра, нанесённого на поверхность керамики и защищённого слоем лака. Керамические конденсаторы изготавливаются на ёмкости о единиц до сотен пикофарад и на напряжения от сотен до тысяч вольт.

Слайд 11

Конденсатор переменной емкости.

Запишите устройство конденсатора

Слайд 12

Запишите какова их электроемкость.

Слайд 13

ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ

  • Слайд 14

    Какова электроемкость конденсатора, если заряд конденсатора 10 нКл, а разность потенциалов 20 кВ. А теперь задача…

    Слайд 15

    Конденсатору емкостью 10 мкФ сообщили заряд 4 мкКл. Какова энергия заряженного конденсатора. А теперь задача…

    Муниципальное автономное общеобразовательное учреждение

    «Лицей № 7» г. Бердск

    Конденсаторы

    8 класс

    Учитель физики

    И.В.Торопчина


    Конденсатор

    Конденсатор- это устройство, предназначенное для накопления электрического заряда и энергии электрического поля.


    Конденсатор

    Конденсатор представляет собой два

    проводника (обкладки), разделенных слоем

    диэлектрика, толщина которого мала по

    сравнению с размерами проводников.


    Все электрическое поле сосредоточено внутри конденсатора и однородно.

    Заряд конденсатора - это абсолютное значение заряда одной из обкладок конденсатора.



    - по виду диэлектрика : воздушные,

    слюдяные, керамические,

    электролитические. - по форме обкладок : плоские,

    сферические, цилиндрические. - по величине емкости:

    постоянные, переменные.


    • В зависимости от назначения конденсаторы имеют различное устройство.

    • Обычный технический бумажный конденсатор состоит из двух полосок алюминиевой фольги, изолированных друг от друга и от металлического корпуса бумажными лентами, пропитанными парафином. Полоски и ленты туго свернуты в пакет небольшого размера

    Конденсаторы переменной электроемкости


    Обозначение конденсаторов

    Конденсатор постоянной ёмкости

    Конденсатор переменной ёмкости


    Электроемкость

    Физическая величина, характеризующая способность двух проводников накапливать электрический заряд называется электроёмкостью, или ёмкостью.


    При увеличении заряда в 2, 3, 4 раза соответственно в 2, 3, 4

    раза увеличатся показания электрометра, т. е. увеличится

    напряжение между пластинами конденсатора.

    Отношение заряда к напряжению будет оставаться

    постоянным:


    Электроёмкость конденсатора

    • Величина, измеряемая отношением заряда ( q) одной из пластин конденсатора к напряжению ( U) между пластинами, называется электроёмкостью конденсатора .
    • Электроёмкость конденсатора вычисляется по формуле:

    C = q / U


    Единицы электроемкости

    Электроемкость измеряется в фарадах(Ф)

    [ С ] = 1Ф (фарад)

    Электроемкость двух проводников численно

    равна единице, если при сообщении им зарядов

    +1 Кл и -1 Кл между ними возникает разность

    потенциалов 1В

    1Ф = 1Кл/В


    Единицы электроемкости

    1 мкФ (микрофарад)=10 -6 Ф

    1 нФ (нанофарад)=10 -9 Ф

    1 пФ (пикофарад)=10 -12 Ф



    • Чем больше площадь пластин, тем больше ёмкость конденсатора.
    • При уменьшении расстояния между пластинами конденсатора при неизменном заряде ёмкость конденсатора увеличивается.
    • При внесении диэлектрика ёмкость конденсатора увеличивается.

    Емкость конденсатора зависит от площади пластин, расстояния между пластинами, от свойств внесённого диэлектрика.


    Электроемкость

    от геометрических

    размеров проводников

    Зависит

    от формы проводников и

    их взаимного расположения

    от электрических свойств

    среды между проводниками


    Энергия конденсатора

    • Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. В соответствии с законом сохранения энергии, совершённая работа А равна энергии конденсатора Е, т. е

    А = Е,

    где Е - энергия конденсатора.

    • Работу электрическое поле конденсатора, можно найти по формуле: А = qU cp ,

    где U ср - это среднее значение напряжения.

    U ср = U/2; тогда А = qU ср = qU/2, так как q = CU, то А = CU 2 /2.

    • Энергия конденсатора ёмкостью С равна:

    W = CU 2 /2


    • Конденсаторы могут длительное время накапливать энергию, а при разрядке они отдают её почти мгновенно.
    • Свойство конденсатора накапливать и быстро отдавать электрическую энергию широко используется в электротехнических и электронных устройствах, в медицинской технике (рентгеновская техника, устройства электротерапии), при изготовлении дозиметров, аэрофотосъёмке.


    • Лампа-вспышка питается электрическим током разрядки конденсатора.
    • Газоразрядные трубки зажигаются при разрядки батареи конденсаторов.
    • Радиотехника .


    Первый конденсатор был изобретен в 1745 г. немецким юристом и учёным Эвальд Юрген фон Клейстом

    Первый конденсатор: одна обкладка-ртуть, другая обкладка- рука экспериментатора, державшая банку.


    • Почти такой же опыт и почти в то же время был поставлен в голландском городе Лейдене профессором университета Питером ван Мушенбруком.
    • Зарядив воду и взяв банку в одну руку, он прикоснулся другой рукой к металлическому стержню, служившему для подвода заряда к воде. При этом Мушенбрук ощутил такой сильный удар в руки, плечи и грудь, что потерял сознание, и два дня приходил в себя.
    • Эксперимент ван Мушенбрука получил большую известность, поэтому конденсатор стал известен как «лейденская банка».

    Домашнее задание

    § 54, Упражнение 38

    Применение конденсаторов

    В радиотехнической и
    телевизионной
    аппаратуре
    В радиолокационной
    технике
    В современной технике конденсаторы
    находят себе исключительно широкое
    и разностороннее применение,
    прежде всего в областях электроники.
    В лазерной технике
    В электроизмерительной
    технике
    В телефонии и
    телеграфии
    В автоматике и
    телемеханике
    В технике счетнорешающих устройств

    1. В радиотехнической и телевизионной аппаратуре –
    для создания колебательных контуров, их настройки,
    блокировки, разделения цепей с различной частотой, в
    фильтрах выпрямителей и т.д.

    2.В радиолокационной технике – для получения
    импульсов большей мощности, формирования
    импульсов и т.д.

    3.В телефонии и телеграфии – для разделения цепей переменного и
    постоянного токов, разделения токов различной частоты,
    искрогашения в контактах, симметрирования кабельных линий и т.д.

    4. В автоматике и телемеханике – для создания
    датчиков на емкостном принципе, разделения цепей
    постоянного и пульсирующего токов, искрогашения в
    контактах, в схемах тиратронных генераторов
    импульсов и т.д.

    5. В технике счетно-решающих устройств – в
    специальных запоминающих устройствах и т.д.

    6. В электроизмерительной технике – для создания
    образцов емкости, получения переменной емкости
    (магазины емкости и лабораторные переменные
    конденсаторы), создания измерительных приборов на
    емкостном принципе и т. д.

    7. В лазерной технике

    В современной электроэнергетике конденсаторы находят себе также
    весьма разнообразное и ответственное применение:
    1.Для улучшения коэффициента мощности и промышленных установок
    (косинусные или шунтовые конденсаторы);
    2.Для продольной емкости компенсации дальних линий передач и для
    регулирования напряжения в распределительных сетях (серийные
    конденсаторы);
    3.Для емкостного отбора энергии от линий передач высокого напряжения и
    для подключения к линиям передач специальной аппаратуры связи и
    защитной аппаратуры (конденсаторы связи);
    4.Для защиты от перенапряжений.

    В
    металлопромыш
    ленности
    В добывающей
    промышленности
    Конденсаторы применяют и в других
    неэлектротехнических областях техники
    и промышленности для следующих
    основных целей
    В
    автотракторной
    технике
    В
    медицинской
    технике

    1. В металлопромышленности - в высокочастотных
    установках для плавки и термической обработки металлов, в
    электроэрозионных (электроискровых) установках, для
    магнитоимпульсной обработки металлов и т.д.

    2. В добывающей промышленности (угольной,
    металлорудной и т.п.) – в рудничном транспорте на
    конденсаторных электровозах нормальной и
    повышенной частоты (бесконтактных), в
    электровзрывных устройствах с использованием
    электрогидравлического эффекта и т.д.

    3. В автотракторной технике – в схемах зажигания для
    искрогашения в контактах и для подавления
    радиопомех

    4. В медицинской технике – в рентгеновской
    аппаратуре, в устройствах электротерапии и т.д.

  • Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png