В любом современном гаджете, будь-то сотовый телефон, планшет, ноутбук, фотоаппарат, видеокамера, либо другое умное цифровое устройство стоит литиевая аккумуляторная батарея.

Если Вас интересует замена аккумуляторной батареи на телефон, смартфон, планшет, ноутбук и другие гаджеты в сервисе в Москве, пишите в чат на этом сайте, либо звоните, мы рады помочь.

Страничка, где можно задать вопрос по замене аккумуляторной батарее:

Как правильно заряжать и разряжать аккумулятор в телефоне, планшете либо другом гаджете?

Покупая любое устройство, или аккумуляторную батарею к нему, часто от продавцов можно услышать — «разрядите полностью, и зарядите полностью» — это заблуждение!
На самом деле необходимо при покупке сразу зарядить аккумулятор, и не допускать полного разряда в 1 %, а то что вы не полностью разрядили и не полностью зарядили аккумулятор не так страшно.
Литий-ионные аккумуляторы не любят полный разряд. Внутренняя химия выжимается до последнего процента, и это плохо. Лучше всего не допускать разряда АКБ менее 10%.

Можно ли купить и поставить усиленную аккумуляторную батарею на iPhone, Samsung либо другой сенсорный телефон, где батарея спрятана внутрь телефона?

Часто попадается на глаза усиленная АКБ в блестящей либо золотистой внешней наклейке на китайских сайтах для различных моделей айфона, где пишут, что АКБ в почти два раза больше емкости и в два раза дольше держит аккумулятор — все это обман и «развод» на деньги! Дело в том, что если литиевый аккумулятор в два раза больше емкости, он должен быть в два раза больше размерами, а такой аккумулятор вместить внутрь сверхтонкого современного гаджета не реально. Не верьте продавцам усиленных батарей. Максимум, за что вы можете сознательно переплатить, если правильно сделать выбор, это найти качественный оригинальный аккумулятор, либо качественно изготовленный аккумулятор с хорошей гарантией. Допустим, немецкая компания Craftmann изготавливает действительно качественные и дорогие аккумуляторы и дает на них гарантию в 1 год.

Можно ли оставлять телефон, планшет, и т.д. на зарядку на ночь?

Конечно же можно! А если бы это вредило вашему устройству, вы бы заметили предупредительную надпись в инструкции, но такого обычно не встретишь в инструкции. В подавляющем большинстве АКБ гаджетов стоит умная плата, схема которой следит за уровнем заряда, уровнем тока и температурой. Если замкнуть АКБ — сработает защита, если заряжать АКБ целую ночь, и даже день — система проследит, чтобы при полном заряде в 100% зарядка прекратилась. Если же при зарядке температура будет превышать нормы по каким-либо причинам, умная система тоже может приостановить заряд, и, возможно, появится надпись на экране гаджета об превышении температуры, и о том, что надо охладить устройство.

Если погрызть аккумулятор, он еще немного прослужит без подзарядки.

Это веселое заблуждение заставляет экспериментаторов грызть аккумуляторы, не подозревая о том, что старая «дедовская» схема не сработает с современными аккумуляторами, которые сделаны совсем по другой технологии, мало того, эти экспериментаторы рискуют таким образом повредить аккумулятор в последствии чего АКБ может резко воспламениться или даже взорваться.

На сколько лет хватает аккумулятора в телефоне, планшете или другом устройстве?

Как показывает практика, на таких телефонах как iPhone , аккумулятора хватает на два года, и спустя этого времени, после начала продаж новых смартфонов, клиенты все чаще обращаются в сервис для замены АКБ, с жалобами, что аккумулятор стал быстро разряжаться и заряжаться. Это свидетельствует, что аккумулятор потерял емкость, и исправить это может только его замена. Предположительно, аккумулятор от айфона в среднем рассчитан на 1000 циклов перезарядок.

Можно ли безопасно заряжать телефон, планшет и др. в машине/автомобиле?

Первые позывы задуматься об безопасности были еще когда появлялись первые автомобильные зарядки, на такие телефоны как Nokia. Тогда были случаи, что продавец продал АЗУ (автомобильное зарядное устройство), и, спустя несколько дней, клиент пришел жаловаться, что эта зарядка спалила/поломала телефон. На самом деле, даже самые оригинальное АЗУ не застрахованы на все сто процентов от импульса, который идет при запуске двигателя с ключа машины. Именно в этот момент идет скачек напряжения, и именно тогда ваш телефон должен быть отключен от зарядного устройства. Запомните это, и советуйте избегать зарядки телефона при старте машины с ключа всем своим знакомым. Часто такой импульс выводит из строя телефон или планшет до такой поломки как сгоревший контроллер питания, или еще хуже, сгоревший процессор, где, не каждый мастер справится с таким ремонтом, а в некоторых моделях это отремонтировать даже не реально.

Какой заряд должен быть в АКБ чтобы гаджет запустился?

Для запуска любого устройства (телефон, планшет, плеер ит.д.), напряжение на аккумуляторной батареи доолжно составлять не ниже 3,6 Вольт, это для тех гаджетов, у которых АКБ с максимальным зарядом показывает 4,2 Вольта. Да, есть исключения у некоторых устройств. Допустим, как показывает практика, наушники могут работать с намного меньшим зарядом, а есть и телефоны и планшеты, у которых при запуске потребление составляет более одного ампера, тогда гаджет будет пытаться запуститься, но «просадка» напряжения, за счет большого потребления, может быть такой, что аппарат будет сразу же выключаться.
Поэтому, лучше заряжать с запасом, для включения — от 3,7 Вольт и выше.

Сколько стоит поменять батарею на телефоне, планшете, ноутбуке?

Стоимость замены аккумулятора зависит от нескольких факторов:

  • Сложность замены — быстро вынимаемые АКБ заменить на много дешевле, нежели встроеннные, где прийдется заплатить мастеру за все его риски при разборке устройства.
  • Качество и производитель — существуют специализирующиеся на аккумуляторах фирмы, которые выпускают большой ассортимент качественных АКБ и дают гарантию до одного года, к таким можно отнести популярную в России Craftmann.
  • Срок гарантии — на обычные китайские АКБ дают гарантию в две недели, на брендовые — до одного года. Если мастерская дает гарантию от одного месяца и более — она берет риски на себя, обычно это компенсируется двойной стоимостью на замену АКБ.
  • Емкость АКБ — чем больше ёмкость АКБ, тем она крупнее и дороже. Все просто — больше объем аккумуляторной банки вмещает больше химии и дольше заряжается и дольше разряжается. Допустим на телефоны АКБ стоит дешевле нежели на планшетные компьютеры.

Берегите свое устройство, и держите его заряд не ниже 10 %.

При длительном хранении и несоблюдении зарядно-разрядных режимов эксплуатации, аккумуляторы сотовых телефонов приходят в негодность. Попытка восстановить ёмкость аккумуляторов длительным зарядом или специальными режимами зарядки и восстановления ёмкости не всегда приводит к желаемому результату. Никель-кадмиевые и никель - металлогидридные аккумуляторы, используемые в сотовой связи, по сравнению с литий- ионными имеют «эффект памяти», не допускают длительного подключения к зарядному устройству, требуют тренировочные циклы. Литий- полимерные аккумуляторы используют твёрдый сухой электролит из полимера, недостаток -плохая проводимость, преимущество –очень малая толщина, устойчивость к перезаряду.

Аккумулятор после продолжительной эксплуатации не имеет достаточной для работы ёмкости, быстро разряжается и долго заряжается.
Старение аккумуляторов вызвано ростом кристаллизации. Кристаллы имеют высокое сопротивление и снижают зарядно-разрядный ток. Применение импульсных зарядных устройств с системой контроля и струйного подзаряда позволяет продлить эксплуатацию аккумулятора.

Разрядить аккумулятор возможно токами не превышающими токи дежурного режима передачи в 150-200мА, нагружая большими тока - схема защиты отключит аккумулятор от нагрузки через 10-20 мс. после подключения, схема запирается и ток разряда снижается почти до нуля, при повторном замыкании разрядной цепи ток разряда вновь возникает. Это необходимо для предотвращения взрыва литий - ионного аккумулятора после образования металлического лития и опасности разгерметизации.

Ток разряда при диагностики аккумулятора можно получить в импульсном режиме с определённой частотой следования импульсов, так называемый импульсный разряд.
Чтобы определить техническое состояние аккумулятора сотового телефона необходимо его нагружать импульсным разрядным током.

Данное решение применимо и для диагностики щелочных и кислотных аккумуляторов любой ёмкости, всё зависит от мощности аккумуляторов и разрядных цепей.

Внутреннее сопротивление аккумуляторов сотовых телефонов не должно превышать 0.3 Ома, большая величина не позволит нормально работать длительное время, напряжение ускоренно снижается, вскоре экран гаснет с переходом в энергосберегающий режим хранения. Для рекомбинации ионов лития в аккумуляторе после полной зарядки рекомендуется 3- 5 часовой отдых аккумулятора. Форма и время разрядного импульса устройства диагностики аккумуляторов сотовых телефонов должно повторять форму нагрузочного тока аккумулятора в режиме передачи цифрового сигнала в стандарте GSM -импульсный ток передачи 1,5 Ампера, длительность 567 мкс и частота следования 4,61 мс. Ток потребления в паузах составляет 200мА. Узел защиты литиевых аккумуляторов состоит из двух микросхем одна работает в режиме компаратора, вторая содержит два последовательных полевых транзистора со встроенными диодами включенными во встречном положении с функциями: защиты от чрезмерной разрядки (когда напряжение на аккумуляторе во время разрядки ниже установленного уровня, задержка закрывания полевого транзистора VT1 составляет 12мс), защита от замыкания выводов аккумулятора (когда напряжение на полевых транзисторах превысит определённый порог, закрывание транзистора VT1 происходит со скоростью 0,4 мс), защита от превышения допустимого зарядного тока (чужой ЗУ - закрывается VT2), зарядка сильно разряженных аккумуляторов (напряжение элемента более 1,5 Вольта).

Принципиальная схема прибора диагностики аккумуляторов сотовых телефонов (рис.1) состоит: из ждущего мультивибратора импульсов на аналоговом таймере DA1, с ручным внешним пуском и установкой частоты генератора, разрядной схемы на биполярном транзисторе VT1 и аналоговом индикаторе ёмкости исследуемого аккумулятора на микросхеме DA3. Питание принципиальной схемы выполнено от сетевого источника через стабилизатор напряжения DA4.

В исходном состоянии на выходе 3 таймера DA1 уровень напряжения близок к нулю, так как в начальный момент подачи питания на входе нижнего компаратора уровень напряжения выше 1/3 Un.В этом устойчивом состоянии схема может находиться сколько угодно долго.

При нажатии кнопки SB1 - «Пуск» появляется запускающий импульс на входе 2 DA1 в виде низкого уровня напряжения, срабатывает нижний компаратор таймера и внутренний триггер переключится, что приведёт к закрытию транзистора сброса по входу 7DA1, конденсатор C2 начнёт заряжаться через резисторы R3,R4, в это время на выходе 3DA1 поддерживается высокий уровень напряжения. Генерирование прямоугольных импульсов продолжится со временем Т1=1,1 С1 (R1+R2).

По достижению на конденсаторе С2 напряжения в 2/3 Un верхний компаратор срабатывает и обнуляет триггер, внутренний транзистор сброса разряжает конденсатор С2 через резистор R5.

При достижении напряжения на конденсаторе С1 более 1/3 Un таймер прекратит работу.
Длительность одиночного импульса на выходе 3DA1 Т2 = 1,1С2 (R3+R4) можно плавно изменять переменным резистором R4.

Вывод 5 DA1 позволяет получить прямой доступ к точке делителя с уровнем напряжения 2/3 Un, являющейся опорной для работы верхнего компаратора. Использование данного вывода позволяет менять этот уровень для получения модификаций схемы. В данном устройстве диагностики аккумуляторов сотовых телефонов этот вывод используется для стабилизации режима измерений и коррекции влияния внешней температуры. Модификация напряжения на выводе 5DA1 выполняется с помощью микросхемы DA2 - регулируемого параллельного стабилизатора напряжения и используется в качестве источника образцового напряжения - регулируемого стабилитрона. В микросхеме стабилизатора имеются собственные устройства защиты от перегрузки и повышенного входного напряжения. Терморезистор RK1 позволяет корректировать изменения технического состояния аккумулятора с учётом повышения или понижения внешней температуры.

При повышении напряжения на нагрузке R9 в цепи эмиттера биполярного транзистора VT1 параллельный стабилизатор открывается по входу управления 1DA2, сопротивление катод-анод снижается и падает напряжение на выводе 5 DA1, растёт частота на выходе 3DA1 таймера, что ведёт к снижению напряжения на нагрузке R9. Назначение транзистора VT1 в схеме диагностики -подключение нагрузки, разрядного резистора R9 к аккумулятору GB1. В коллекторную цепь транзистора подключен испытуемый аккумулятор, в эмиттерную подключены, кроме нагрузки, цепи контроля напряжения и температуры цепи отрицательной обратной связи RК1,R11,R10 и цепи контроля уровня емкости аккумулятора R12, R13,R14.

Напряжение аккумуляторов разного исполнения несколько отличаются, корректировку можно выполнить резистором R11. Падение напряжения на нагрузке - резисторе R9 при открытии очередным импульсом генератора транзистора VT1 создаёт падение напряжения, оно тем больше чем больше ёмкость аккумулятора и ниже его внутреннее сопротивление. С переменного резистора R13 через резистор R14 контрольное напряжение поступает на входной усилитель пятиканального таймера DA3. К выводам ключей компараторов К1-К5 подключены светодиоды. Возрастание напряжения на входе 8DA3, после усиления, поступает на внутренний делитель напряжения сигнала, ключи на входах внутренних компаратор будут открываться в момент превышения этого напряжения. Чем больше уровень сигнала, тем больше ключей будет открыто. При напряжении на входе 8DA3 в 0,25 Вольта горят все светодиоды.

Светодиоды по свечению следует распределить в следующем порядке: красный, полный разряд - HL1, оранжевый HL2 –емкость в аккумуляторе минимальная, зелёный HL3,HL4 - заряжен на 50 -75 процентов, синий HL5 -100%. При полной зарядке включится звуковой сигнал сирены ZQ1.

Наладку принципиальной схемы диагностики аккумуляторов сотовых телефонов начинают с проверки работы генератора на таймере DA1, если нет осциллографа импульсы на выходе 3 таймера DA1 можно определить по светодиоду или вольтметром по высокому уровню при нажатии кнопки «Пуск».

Подключив в правильной полярности свежезаряженный аккумулятор сотового телефона, резистором R13 выставить свечение светодиода HL5.

При диагностике аккумуляторов со сроком работы более 6 месяцев, количество включенных светодиодов уменьшится. Снижение напряжения на аккумуляторе при высоком внутренним сопротивлении снизит падение напряжения на разрядном резисторе R9. Подключение проверяемого аккумулятора к устройству диагностики выполняется острыми наконечниками контрольных шнуров используемых от тестеров.

Время измерения устанавливается резистором R1, частота следования импульсов в пределах 400 -1000 Герц устанавливается резистором R4.

Светодиоды крепятся в отверстия передней панели корпуса в приемлемом порядке. Все радиодетали малогабаритные с установкой на печатной плате.

Сетевой трансформатор на выходное напряжение 2*9 вольт 100мА крепится в корпусе отдельно от печатной платы. Сетевое питание, в переносном варианте использования прибора, можно заменить на батарею типа «Крона» напряжением 9 вольт.

Литература:

  1. В.Коновалов «Зарядно-восстановительное устройство для Ni-Ca аккумуляторов» Радио №3 /2006 стр.53.
  2. В.Коновалов «Измеритель R-вн АБ» Радиомир №8.2004г. стр.14.
  3. В.Коновалов «Импульсная диагностика аккумуляторов». №7.2008г. стр.15
  4. Д.А.Хрусталёв «Аккумуляторы» г. Москва 2003г.
  5. И.П.Шелестов «Радиолюбителям полезные схемы» книга 5.
  6. Микросхемы для защиты литиевых аккумуляторов. Радио №8 2004 г. стр.49.
  7. Малогабаритные сетевые трансформаторы.Радио №8/2004 стр.44.
  8. И.Нечаев «Стабилизаторы напряжения с микросхемой КР142ЕН19А.» Радио №6.2000 стр.57.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Программируемый таймер и осциллятор

TLC555M

1 В блокнот
DA2 ИС источника опорного напряжения

TL431

1 В блокнот
DA3 Микросхема AN6884 1 В блокнот
DA4 Линейный регулятор

LM7809

1 В блокнот
VT1 Биполярный транзистор

КТ829А

1 В блокнот
VD1 Диод

КД512Б

1 В блокнот
VD2 Диодная сборка F12C20C 1 В блокнот
С1 47 мкФ 1 В блокнот
С2 Конденсатор 0.1 мкФ 1 В блокнот
С3 Конденсатор 0.01 мкФ 1 В блокнот
С4 Конденсатор 0.22 1 В блокнот
С5, С7 Электролитический конденсатор 470 мкФ 16 В 2 В блокнот
С6 Электролитический конденсатор 10 мкФ 16 В 1 В блокнот
R1 Подстроечный резистор 1 МОм 1 В блокнот
R2 Резистор

100 кОм

1 В блокнот
R3 Резистор

33 кОм

1 В блокнот
R4 Подстроечный резистор 330 кОм 1 В блокнот
R5, R10 Резистор

510 Ом

2 В блокнот
R6, R8 Резистор

1.5 кОм

2 В блокнот
R7 Резистор

12 кОм

1 В блокнот
R9 Резистор

3 Ом

1 5 Вт В блокнот
R11 Переменный резистор 2.2 кОм 1 В блокнот
R12, R15 Резистор

5.6 кОм

2

Оценка характеристик того или иного зарядного устройства затруднительна без понимания того, как собственно должен протекать образцовый заряд li-ion аккумулятора. Поэтому прежде чем перейти непосредственно к схемам, давайте немного вспомним теорию.

Какими бывают литиевые аккумуляторы

В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:

  • с катодом из кобальтата лития;
  • с катодом на основе литированного фосфата железа;
  • на основе никель-кобальт-алюминия;
  • на основе никель-кобальт-марганца.

У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.

Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.

Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):

Обозначение Типоразмер Схожий типоразмер
XXYY0 ,
где XX - указание диаметра в мм,
YY - значение длины в мм,
0 - отражает исполнение в виде цилиндра
10180 2/5 AAA
10220 1/2 AAA (Ø соответствует ААА, но на половину длины)
10280
10430 ААА
10440 ААА
14250 1/2 AA
14270 Ø АА, длина CR2
14430 Ø 14 мм (как у АА), но длина меньше
14500 АА
14670
15266, 15270 CR2
16340 CR123
17500 150S/300S
17670 2xCR123 (или 168S/600S)
18350
18490
18500 2xCR123 (или 150A/300P)
18650 2xCR123 (или 168A/600P)
18700
22650
25500
26500 С
26650
32650
33600 D
42120

Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.

Как правильно заряжать литий-ионные аккумуляторы

Наиболее правильным способом заряда литиевых аккумуляторов является заряд в два этапа. Именно этот способ использует компания Sony во всех своих зарядниках. Несмотря на более сложный контроллер заряда, это обеспечивает более полный заряд li-ion аккумуляторов, не снижая срока их службы.

Здесь речь идет о двухэтапном профиле заряда литиевых аккумуляторов, сокращенно именуемым CC/CV (constant current, constant voltage). Есть еще варианты с ипульсным и ступенчатым токами, но в данной статье они не рассматриваются. Подробнее про зарядку импульсным током можно прочитать .

Итак, рассмотрим оба этапа заряда подробнее.

1. На первом этапе должен обеспечиваться постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для ускоренного заряда допускается увеличение тока до 0.5-1.0С (где С - это емкость аккумулятора).

Например, для аккумулятора емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА, а ток ускоренного заряда может лежать в пределах 1.5-3А.

Для обеспечения постоянного зарядного тока заданной величины, схема зарядного устройства (ЗУ) должна уметь поднимать напряжение на клеммах аккумулятора. По сути, на первом этапе ЗУ работает как классический стабилизатор тока.

Важно: если планируется заряд аккумуляторов со встроенной платой защиты (PCB), то при конструировании схемы ЗУ необходимо убедиться, что напряжение холостого хода схемы никогда не сможет превысить 6-7 вольт. В противном случае плата защиты может выйти из строя.

В момент, когда напряжение на аккумуляторе поднимется до значения 4.2 вольта, аккумулятор наберет приблизительно 70-80% своей емкости (конкретное значение емкости будет зависит от тока заряда: при ускоренном заряде будет чуть меньше, при номинальном - чуть больше). Этот момент является окончанием первого этапа заряда и служит сигналом для перехода ко второму (и последнему) этапу.

2. Второй этап заряда - это заряд аккумулятора постоянным напряжением, но постепенно снижающимся (падающим) током.

На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.

По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.

Важным нюансом работы правильного зарядного устройства является его полное отключение от аккумулятора после окончания зарядки. Это связано с тем, что для литиевых аккумуляторов является крайне нежелательным их длительное нахождение под повышенным напряжением, которое обычно обеспечивает ЗУ (т.е. 4.18-4.24 вольта). Это приводит к ускоренной деградации химического состава аккумулятора и, как следствие снижению его емкости. Под длительным нахождением подразумевается десятки часов и более.

За время второго этапа заряда, аккумулятор успевает набрать еще примерно 0.1-0.15 своей емкости. Общий заряд аккумулятора таким образом достигает 90-95%, что является отличным показателем.

Мы рассмотрели два основных этапа заряда. Однако, освещение вопроса зарядки литиевых аккумуляторов было бы неполным, если бы не был упомянут еще один этап заряда - т.н. предзаряд.

Предварительный этап заряда (предзаряд) - этот этап используется только для глубоко разряженных аккумуляторов (ниже 2.5 В) для вывода их на нормальный эксплуатационный режим.

На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.8 В.

Предварительный этап необходим для предотвращения вспучивания и разгерметизации (или даже взрыва с возгоранием) поврежденных аккумуляторов, имеющих, например, внутреннее короткое замыкание между электродами. Если через такой аккумулятор сразу пропустить большой ток заряда, это неминуемо приведет к его разогреву, а дальше как повезет.

Еще одна польза предзаряда - это предварительный прогрев аккумулятора, что актуально при заряде при низких температурах окружающей среды (в неотапливаемом помещении в холодное время года).

Интеллектуальная зарядка должна уметь контролировать напряжение на аккумуляторе во время предварительного этапа заряда и, в случае, если напряжение долгое время не поднимается, делать вывод о неисправности аккумулятора.

Все этапы заряда литий-ионного аккумулятора (включая этап предзаряда) схематично изображены на этом графике:

Превышение номинального зарядного напряжения на 0,15В может сократить срок службы аккумулятора вдвое. Понижение напряжения заряда на 0,1 вольт уменьшает емкость заряженной батареи примерно на 10%, но значительно продляет срок ее службы. Напряжение полностью заряженного аккумулятора после извлечения его из зарядного устройства составляет 4.1-4.15 вольта.

Резюмирую вышесказанное, обозначим основные тезисы:

1. Каким током заряжать li-ion аккумулятор (например, 18650 или любой другой)?

Ток будет зависеть от того, насколько быстро вы хотели бы его зарядить и может лежать в пределах от 0.2С до 1С.

Например, для аккумулятора типоразмера 18650 емкостью 3400 мА/ч, минимальный ток заряда составляет 680 мА, а максимальный - 3400 мА.

2. Сколько времени нужно заряжать, например, те же аккумуляторные батарейки 18650?

Время заряда напрямую зависит от тока заряда и рассчитывается по формуле:

T = С / I зар.

Например, время заряда нашего аккумулятора емкостью 3400 мА/ч током в 1А составит около 3.5 часов.

3. Как правильно зарядить литий-полимерный аккумулятор?

Любые литиевые аккумуляторы заряжаются одинаково. Не важно, литий-полимерный он или литий-ионный. Для нас, потребителей, никакой разницы нет.

Что такое плата защиты?

Плата защиты (или PCB - power control board) предназначена для защиты от короткого замыкания, перезаряда и переразряда литиевой батареи. Как правило в модули защиты также встроена и защита от перегрева.

В целях соблюдения техники безопасности запрещено использование литиевых аккумуляторов в бытовых приборах, если в них не встроена плата защиты. Поэтому во всех аккумуляторах от сотовых телефонов всегда есть PCB-плата. Выходные клеммы АКБ размещены прямо на плате:

В этих платах используется шестиногий контроллер заряда на специализированной микрухе (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.

Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны:

Если говорить об 18650, то они могут выпускаться как с платой защиты так и без нее. Модуль защиты располагается в районе минусовой клеммы аккумулятора.

Плата увеличивает длину аккумулятора на 2-3 мм.

Аккумуляторы без PCB-модуля обычно входят в состав батарей, комплектуемых собственными схемами защиты.

Любой аккумулятор с защитой легко превращается в аккумулятор без защиты, достаточно просто распотрошить его.

На сегодняшний день максимальная емкость аккумулятора 18650 составляет 3400 мА/ч. Аккумуляторы с защитой обязательно имеют соответствующее обозначение на корпусе ("Protected").

Не стоит путать PCB-плату с PCM-модулем (PCM - power charge module). Если первые служат только целям защиты аккумулятора, то вторые предназначены для управления процессом заряда - ограничивают ток заряда на заданном уровне, контролируют температуру и, вообще, обеспечивают весь процесс. PCM-плата - это и есть то, что мы называем контроллером заряда.

Надеюсь, теперь не осталось вопросов, как зарядить аккумулятор 18650 или любой другой литиевый? Тогда переходим к небольшой подборке готовых схемотехнических решений зарядных устройств (тех самых контроллеров заряда).

Схемы зарядок li-ion аккумуляторов

Все схемы подходят для зарядки любого литиевого аккумулятора, остается только определиться с зарядным током и элементной базой.

LM317

Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:

Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 - не менее 1 Ватт.

Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.

Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Продается на каждом углу и стоит вообще копейки (можно взять 10 шт. всего за 55 рублей).

LM317 бывает в разных корпусах:

Назначение выводов (цоколевка):

Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два - отечественного производства).

Зарядный ток можно увеличить до 3А, если вместо LM317 взять LM350. Она, правда, подороже будет - 11 руб/шт .

Печатная плата и схема в сборе приведены ниже:

Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.

Недостаток схемы: напряжение питания должно быть в пределах 8-12В. Это связано с тем, что для нормальной работы микросхемы LM317 разница между напряжением на аккумуляторе и напряжением питания должна быть не менее 4.25 Вольт. Таким образом, от USB-порта запитать не получится.

MAX1555 или MAX1551

MAX1551/MAX1555 - специализированные зарядные устройства для Li+ аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона).

Единственное отличие этих микросхем - МАХ1555 выдает сигнал для индикатора процесса заряда, а МАХ1551 - сигнал того, что питание включено. Т.е. 1555 в большинстве случаев все-таки предпочтительнее, поэтому 1551 сейчас уже трудно найти в продаже.

Подробное описание этих микросхем от производителя - .

Максимальное входное напряжение от DC-адаптера - 7 В, при питании от USB - 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.

Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА - это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.

При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.

В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.

Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.

Микросхема имеет 5 выводов. Вот типовая схема включения:

Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.

Вариант зарядки от USB можно собрать, например, на такой .

Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Вообще, конечно, шикарные микрухи! Только они маленькие слишком, паять неудобно. И еще стоят дорого ().

LP2951

Стабилизатор LP2951 производится фирмой National Semiconductors (). Он обеспечивает реализацию встроенной функции ограничения тока и позволяет формировать на выходе схемы стабильный уровень напряжения заряда литий-ионного аккумулятора.

Величина напряжения заряда составляет 4,08 - 4,26 вольта и выставляется резистором R3 при отключенном аккумуляторе. Напряжение держится очень точно.

Ток заряда составляет 150 - 300мА, это значение ограничено внутренними цепями микросхемы LP2951 (зависит от производителя).

Диод применять с небольшим обратным током. Например, он может быть любым из серии 1N400X, какой удастся приобрести. Диод используется, как блокировочный, для предотвращения обратного тока от аккумулятора в микросхему LP2951 при отключении входного напряжения.

Данная зарядка выдает довольно низкий зарядный ток, так что какой-нибудь аккумулятор 18650 может заряжаться всю ночь.

Микросхему можно купить как в DIP-корпусе , так и в корпусе SOIC (стоимость около 10 рублей за штучку).

MCP73831

Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.

Типовая схема включения взята из :

Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.

Зарядка в сборе выглядит так:

Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.

Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:

LTC4054 (STC4054)

Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. ). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.

Схему можно существенно упростить, выкинув один или даже оба светодиодов с транзистором. Тогда она будет выглядеть вот так (согласитесь, проще некуда: пара резисторов и один кондер):

Один из вариантов печатной платы доступен по . Плата рассчитана под элементы типоразмера 0805.

I=1000/R . Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.

Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод "через выводы" - делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено "земляной" фольги, тем лучше.

Кстати говоря, бОльшая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).

Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY.

LTH7 от LTADY отличаются тем, что первая может поднять сильно севший аккумулятор (на котором напряжение меньше 2.9 вольт), а вторая - нет (нужно отдельно раскачивать).

Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.

TP4056

Микросхема выполнена в корпусе SOP-8 (см. ), имеет на брюхе металлический теплосьемник не соединенный с контактами, что позволяет эффективнее отводить тепло. Позволяет заряжать аккумулятор током до 1А (ток зависит от токозадающего резистора).

Схема подключения требует самый минимум навесных элементов:

Схема реализует классический процесс заряда - сначала заряд постоянным током, затем постоянным напряжением и падающим током. Все по-научному. Если разобрать зарядку по шагам, то можно выделить несколько этапов:

  1. Контроль напряжения подключенного аккумулятора (это происходит постоянно).
  2. Этап предзаряда (если аккумулятор разряжен ниже 2.9 В). Заряд током 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2 кОм) до уровня 2.9 В.
  3. Зарядка максимальным током постоянной величины (1000мА при R prog = 1.2 кОм);
  4. При достижении на батарее 4.2 В, напряжение на батарее фиксируется на этому уровне. Начинается плавное снижение зарядного тока.
  5. При достижении тока 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2кОм) зарядное устройство отключается.
  6. После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора (см. п.1). Ток, потребляемый схемой мониторинга 2-3 мкА. После падения напряжения до 4.0В, зарядка включается снова. И так по кругу.

Ток заряда (в амперах) рассчитывается по формуле I=1200/R prog . Допустимый максимум - 1000 мА.

Реальный тест зарядки с аккумулятором 18650 на 3400 мА/ч показан на графике:

Достоинство микросхемы в том, что ток заряда задается всего лишь одним резистором. Не требуются мощные низкоомные резисторы. Плюс имеется индикатор процесса заряда, а также индикация окончания зарядки. При неподключенном аккумуляторе, индикатор моргает с периодичностью раз в несколько секунд.

Напряжение питания схемы должно лежать в пределах 4.5...8 вольт. Чем ближе к 4.5В - тем лучше (так чип меньше греется).

Первая нога используется для подключения датчика температуры, встроенного в литий-ионную батарею (обычно это средний вывод аккумулятора сотового телефона). Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостанавливается. Если контроль температуры вам не нужен, просто посадите эту ногу на землю.

Внимание! У данной схемы есть один существенный недостаток: отсутствие схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выгорает из строя из-за превышения максимального тока. При этом напряжение питания схемы напрямую попадает на аккумулятор, что очень опасно.

Печатка простая, делается за час на коленке. Если время терпит, можно заказать готовые модули. Некоторые производители готовых модулей добавляют защиту от перегрузки по току и переразряда ( , например, можно выбрать какая плата вам нужна - с защитой или без, и с каким разъемом).

Так же можно найти готовые платы с выведенным контактом под температурный датчик. Или даже модуль зарядки с несколькими запараллеленными микросхемами TP4056 для увеличения зарядного тока и с защитой от переполюсовки (пример).

LTC1734

Тоже очень простая схема. Ток заряда задается резистором R prog (например, если поставить резистор на 3 кОм, ток будет равен 500 мА).

Микросхемы обычно имеют маркировку на корпусе: LTRG (их можно часто встретить в старых телефонах от самсунгов).

Транзистор подойдет вообще любой p-n-p, главное, чтобы он был рассчитан на заданный ток зарядки.

Индикатора заряда на указанной схеме нет, но в на LTC1734 сказано, что вывод "4" (Prog) имеет две функции - установку тока и контроль окончания заряда батареи. Для примера приведена схема с контролем окончания заряда при помощи компаратора LT1716.

Компаратор LT1716 в данном случае можно заменить дешевым LM358.

TL431 + транзистор

Наверное, сложно придумать схему из более доступных компонентов. Здесь самое сложное - это найти источник опорного напряжение TL431. Но они настолько распространены, что встречаются практически повсюду (редко какой источник питания обходится без этой микросхемы).

Ну а транзистор TIP41 можно заменить любым другим с подходящим током коллектора. Подойдут даже старые советские КТ819, КТ805 (или менее мощные КТ815, КТ817).

Настройка схемы сводится к установке выходного напряжения (без аккумулятора!!!) с помощью подстроечного резистора на уровне 4.2 вольта. Резистор R1 задает максимальное значение зарядного тока.

Данная схема полноценно реализует двухэтапный процесс заряда литиевых аккумуляторов - сначала зарядка постоянным током, затем переход к фазе стабилизации напряжения и плавное снижение тока практически до нуля. Единственный недостаток - плохая повторяемость схемы (капризна в настройке и требовательна к используемым компонентам).

MCP73812

Есть еще одна незаслуженно обделенная вниманием микросхема от компании Microchip - MCP73812 (см. ). На ее базе получается очень бюджетный вариант зарядки (и недорогой!). Весь обвес - всего один резистор!

Кстати, микросхема выполнена в удобном для пайки корпусе - SOT23-5.

Единственный минус - сильно греется и нет индикации заряда. Еще она как-то не очень надежно работает, если у вас маломощный источник питания (который дает просадку напряжения).

В общем, если для вас индикация заряда не важна, и ток в 500 мА вас устраивает, то МСР73812 - очень неплохой вариант.

NCP1835

Предлагается полностью интегрированное решение - NCP1835B, обеспечивающее высокую стабильность зарядного напряжения (4.2 ±0.05 В).

Пожалуй, единственным недостатком данной микросхемы является ее слишком миниатюрный размер (корпус DFN-10, размер 3х3 мм). Не каждому под силу обеспечить качественную пайку таких миниатюрных элементов.

Из неоспоримых преимуществ хотелось бы отметить следующее:

  1. Минимальное количество деталей обвеса.
  2. Возможность зарядки полностью разряженной батареи (предзаряд током 30мА);
  3. Определение окончания зарядки.
  4. Программируемый зарядный ток - до 1000 мА.
  5. Индикация заряда и ошибок (способна детектировать незаряжаемые батарейки и сигнализировать об этом).
  6. Защита от продолжительного заряда (изменяя емкость конденсатора С т, можно задать максимальное время заряда от 6,6 до 784 минут).

Стоимость микросхемы не то чтобы копеечная, но и не настолько большая (~1$), чтобы отказаться от ее применения. Если вы дружите с паяльником, я бы порекомендовал остановить свой выбор на этом варианте.

Более подробное описание находится в .

Можно ли заряжать литий-ионный аккумулятор без контроллера?

Да, можно. Однако это потребует плотного контроля за зарядным током и напряжением.

Вообще, зарядить АКБ, к примеру, наш 18650 совсем без зарядного устройства не получится. Все равно нужно как-то ограничивать максимальный ток заряда, так что хотя бы самое примитивное ЗУ, но все же потребуется.

Самое простейшее зарядное устройство для любого литиевого аккумулятора - это резистор, включенный последовательно с аккумулятором:

Сопротивление и мощность рассеяния резистора зависят от напряжения источника питания, который будет использоваться для зарядки.

Давайте в качестве примера, рассчитаем резистор для блока питания напряжением 5 Вольт. Заряжать будем аккумулятор 18650, емкостью 2400 мА/ч.

Итак, в самом начале зарядки падение напряжение на резисторе будет составлять:

U r = 5 - 2.8 = 2.2 Вольта

Предположим, наш 5-вольтовый блок питания рассчитан на максимальный ток 1А. Самый большой ток схема будет потреблять в самом начале заряда, когда напряжение на аккумуляторе минимально и составляет 2.7-2.8 Вольта.

Внимание: в данных расчетах не учитывается вероятность того, что аккумулятор может быть очень глубоко разряжен и напряжение на нем может быть гораздо ниже, вплоть до нуля.

Таким образом, сопротивление резистора, необходимое для ограничения тока в самом начале заряда на уровне 1 Ампера, должно составлять:

R = U / I = 2.2 / 1 = 2.2 Ом

Мощность рассеивания резистора:

P r = I 2 R = 1*1*2.2 = 2.2 Вт

В самом конце заряда аккумулятора, когда напряжение на нем приблизится к 4.2 В, ток заряда будет составлять:

I зар = (U ип - 4.2) / R = (5 - 4.2) / 2.2 = 0.3 А

Т.е., как мы видим, все значения не выходят за рамки допустимых для данного аккумулятора: начальный ток не превышает максимально допустимый ток заряда для данного аккумулятора (2.4 А), а конечный ток превышает ток, при котором аккумулятор уже перестает набирать емкость (0.24 А).

Самый главный недостаток такой зарядки состоит в необходимости постоянно контролировать напряжение на аккумуляторе. И вручную отключить заряд, как только напряжение достигнет 4.2 Вольта. Дело в том, что литиевые аккумуляторы очень плохо переносят даже кратковременное перенапряжение - электродные массы начинают быстро деградировать, что неминуемо приводит к потери емкости. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации.

Если в ваш аккумулятор встроена плата защиты, о которых речь шла чуть выше, то все упрощается. По достижении определенного напряжение на аккумуляторе, плата сама отключит его от зарядного устройства. Однако такой способ зарядки имеет существенные минусы, о которых мы рассказывали в .

Защита, встроенная в аккумулятор не позволит его перезарядить ни при каких обстоятельствах. Все, что вам остается сделать, это проконтролировать ток заряда, чтобы он не превысил допустимые значения для данного аккумулятора (платы защиты не умеют ограничивать ток заряда, к сожалению).

Зарядка при помощи лабораторного блока питания

Если в вашем распоряжении имеется блок питания с защитой (ограничением) по току, то вы спасены! Такой источник питания уже является полноценным зарядным устройством, реализующим правильный профиль заряда, о котором мы писали выше (СС/СV).

Все, что нужно сделать для зарядки li-ion - это выставить на блоке питания 4.2 вольта и установить желаемое ограничение по току. И можно подключать аккумулятор.

Вначале, когда аккумулятор еще разряжен, лабораторный блок питания будет работать в режиме защиты по току (т.е. будет стабилизировать выходной ток на заданном уровне). Затем, когда напряжение на банке поднимется до установленных 4.2В, блок питания перейдет в режим стабилизации напряжения, а ток при этом начнет падать.

Когда ток упадет до 0.05-0.1С, аккумулятор можно считать полностью заряженным.

Как видите, лабораторный БП - практически идеальное зарядное устройство! Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться. Но это мелочь, на которую даже не стоит обращать внимания.

Как заряжать литиевые батарейки?

И если мы говорим об одноразовой батарейке, не предназначенной для перезарядки, то правильный (и единственно верный) ответ на этот вопрос - НИКАК.

Дело в том, что любая литиевая батарейка (например, распространенная CR2032 в виде плоской таблетки) характеризуется наличием внутреннего пассивирующего слоя, которым покрыт литиевый анод. Этот слой предотвращает химическую реакцию анода с электролитом. А подача стороннего тока разрушает вышеуказанный защитный слой, приводя к порче элемента питания.

Кстати, если говорить о незаряжаемой батарейке CR2032, то есть очень похожая на нее LIR2032 - это уже полноценный аккумулятор. Ее можно и нужно заряжать. Только у нее напряжение не 3, а 3.6В.

О том же, как заряжать литиевые аккумуляторы (будь то аккумулятор телефона, 18650 или любой другой li-ion аккумулятор) шла речь в начале статьи.

85 коп/шт. Купить MCP73812 65 руб/шт. Купить NCP1835 83 руб/шт. Купить *Все микросхемы с бесплатной доставкой

Владельцы современных мобильных телефонов постоянно сталкиваются с такой проблемой - батарея перестает держать заряд. Поэтому вопрос телефона?" вполне логичен, ведь покупать новую батарею практически никогда не хочется.

Почему аккумулятор плохо держит заряд

Со временем емкость батареи падает - это физический процесс, который невозможно предотвратить. У аккумулятора есть свой срок годности, и когда он подходит к концу, свойства аккумулятора начинают портиться. Однако ответ на вопрос "Можно ли реанимировать аккумулятор для телефона?" остается положительным - продлить срок его службы вполне возможно, и ниже мы расскажем как.

Кроме того, батарея может хуже держать заряд из-за физической неисправности - загрязненности контактов или вздутия. Тут, скорее всего, понадобится его заменить.

Почему телефон не заряжается

Не заряжается аккумулятор обычно из-за каких-то физических неисправностей. Можно реанимировать аккумулятор телефона в такой ситуации? Нет, скорее всего, нельзя, так как поломка не позволит это сделать. Однако бывает так, что аккумулятор не получается зарядить, если он давно полностью разрядился, то есть произошла глубокая разрядка. И в этом случае батарее телефона еще можно помочь.

после глубокой разрядки при помощи батарейки

Если полностью и давно не заряжался, то он вполне может не реагировать на обычную зарядку. В этом случае можно попробовать зарядить его от другой батарейки. Для этой процедуры вам понадобится:

  • Девятивольтовая батарейка.
  • Десять сантиметров изоленты.
  • Два обычных тонких электропровода.
  • Непосредственно "убитый" аккумулятор.
  1. Обмотайте провода изолентой, оставив свободными края с обеих сторон.
  2. Подсоедините один провод одним концом к контакту "плюс", а другой провод - к контакту "минус". Понять контакты можно по маркировке. Обязательно используйте два разных провода.
  3. Примотайте провода изолентой.
  4. Другие концы проводов соедините соответственно с плюсом и минусом батарейки. Обязательно соединяйте плюс аккумулятора с плюсом батарейки, и минус аккумулятора с минусом батарейки! В противном случае может произойти короткое замыкание, что приведет к удару током и порче обоих источников питания.
  5. Примотайте провода изолентой к батарейке.

После этих манипуляций ждите до тех пор, пока батарея телефона немного не нагреется. Обычно это занимает примерно минуту. После этого дайте аккумулятору остыть и поместите его в телефон. Если телефон включается, то поздравляем - вы только что узнали, как реанимировать аккумулятор телефона!

Как реанимировать аккумулятор телефона в домашних условиях «лягушкой»

Еще один достаточно простой способ восстановления аккумулятора - зарядка его устройством «лягушка». Этот прибор позволяет быстро зарядить даже полностью разряженный аккумулятор. Он представляет собой блок, который включается в розетку. К нему подключается аккумулятор, затем контакты «лягушки» соединяются с контактами "пациента" и начинается зарядка. Как правило, много времени она не занимает. Многим помогает именно этот способ, хотя эффективен он не всегда.

Замораживание батареи

Многие из нас слышали вопрос «Как реанимировать аккумулятор телефона в морозилке?». Вопрос кажется странным, однако на самом деле это весьма эффективный метод. Он осуществляется в несколько этапов:

  1. Вытащите из телефона полностью разряженный аккумулятор.
  2. Поместите его в пакет. Он должен быть пластиковым и герметичным, чтобы на батарею не попала вода.
  3. Положите пакет с аккумулятором в морозильник примерно на 12 часов.
  4. Лучше подложите что-нибудь под пакет, чтобы тот не примерз к дну морозилки.
  5. Через 12 часов вытащите аккумулятор и дайте ему нагреться до комнатной температуры. Ни в коем случае не вставляйте в телефон холодный аккумулятор!
  6. Протрите батарею от влаги, вставьте в телефон и включите мобильный.
  7. Если телефон включается, то поставьте его на зарядку.

Низкая температура немного восстанавливает энергию аккумулятора и позволяет эффективно заряжать его от обычных зарядных устройств. Кстати, иногда это помогает и в том случае, если аккумулятор просто стал хуже держать заряд.

Важные предупреждения

  • Ни в коем случае не оставляйте аккумулятор подключенным к девятивольтовой батарейке надолго - это может привести к его взрыву.
  • Иногда если надолго оставить их в морозилке. Это связано с тем, что для батареи не менее губительно слишком длительное воздействие низкой температуры.

  • Если вам кажется, что аккумулятор неисправен, то проверьте сначала, нет ли проблемы с зарядным устройством. Возможно, телефон не заряжается из-за того, что сломалось именно оно.
  • Пытайтесь зарядить от девятивольтовой батарейки только полностью разряженные аккумуляторы. Если батарея работает, то она легко может загореться либо вообще взорваться.
  • Обязательно помещайте аккумулятор в морозильник в герметичном пакете - так он не испортит вам еду, если вдруг подтечет.

Если вы будете следовать этим советам, то вопрос, как реанимировать аккумулятор телефона, решится для вас быстро и без проблем.

Как восстановить прежнюю емкость аккумулятора

Если ваш аккумулятор не «умер», а просто стал хуже держать заряд, то в домашних условиях с помощью нескольких манипуляций вы можете на некоторое время вернуть ему емкость. Для этого вам понадобится эта деталь, источник тока с регулировкой напряжения силы, реостат и вольтметр.

  1. Подключите параллельно аккумулятору реостат и вольтметр.
  2. Понизьте напряжение до одного вольта, но не ниже 0,9 вольт.
  3. Следите, чтобы батарея была не горячее 50 °С. Если она нагреется сильнее, то отключите ее и охладите до комнатной температуры.
  4. Подождите примерно 15 минут.
  5. Подключите батарею и амперметр последовательно, а вольтметр и источник тока параллельно. Один контакт вольтметра соедините со свободным полюсом батарейки, а другой - с контактом амперметра.
  6. После этого медленно закрепите на батарее термодатчик и поставьте с помощью регулятора минимальное напряжение.
  7. Затем осторожно поднимайте его, пока сила тока не станет равна одной десятой ёмкости аккумулятора.
  8. Каждые пять минут повышайте уровень напряжения, а когда сила тока станет снижаться, делайте это каждый час.
  9. Когда напряжение дойдет до 1,5 Вольт, просто оставьте батарею на зарядке.
  10. Через 5-6 часов или раньше сила тока упадет до нуля. В этот момент отключите зарядку.
  11. Подождите примерно полчаса и поставьте телефон на обычную зарядку.

Иногда подобную процедуру следует повторять несколько раз, но результаты могут быть действительно впечатляющими.

Теперь вы знаете, как реанимировать аккумулятор телефона в различных, даже самых сложных ситуациях. Для одних способов вам не потребуется практически ничего, а для других нужны будут минимальные навыки обращения с электричеством. Если вы считаете, что их у вас нет, то попробуйте отдать аккумулятор в сервисный центр. Иногда за его восстановление берут не такие уж большие суммы.

Если же восстановить аккумулятор так и не удастся, то задумайтесь о покупке нового - все равно у любого устройства есть тот или иной срок службы, и продлить его можно далеко не всегда. А аккумуляторы, даже фирменные, сегодня стоят не так уж дорого.

Аккумуляторы для мобильных устройств — методы заряда

Старушка купила автомобиль, проехала некоторое расстояние, и вдруг двигатель заглох. Вызванная служба технической поддержки констатировала — закончился бензин. Недоумевающая старушка подает в суд: при продаже ей никто не объяснил, что в машину еще нужно заливать бензин…

Итак, аккумуляторы надо заряжать. В этом их существенное отличие от батареек. Но прежде чем говорить о зарядных устройствах, коротко остановимся на основных методах заряда наиболее распространенных типов аккумуляторов. Следует отметить, что методы заряда аккумуляторов на основе никеля отличаются от методов заряда литий-ионных аккумуляторов. Поэтому при заряде последних обращайте внимание на то, в какое зарядное устройство вы их вставляете. Иными словами, не всякое зарядное устройство для никель-кадмиевых (NiCd) и никель-металл гидридных (NiMH) аккумуляторов годится для заряда литий-ионных (Li-ion) аккумуляторов.

Несколько слов о терминологии. Емкость аккумулятора обычно обозначается буквой «C» (capacity). Когда говорят о разряде, равном 1/10 C, то это означает разряд током, равным десятой части от величины номинальной емкости аккумулятора. Так, например, для аккумулятора емкостью 1000 мА·час это будет разряд током 1000/10 = 100 мА. Теоретически, аккумулятор емкостью 1000 мА·час может отдавать ток 1000 мА в течение одного часа, 100 мА в течение 10 часов, или 10 мА в течение 100 часов. Практически же, при высоких значениях тока разряда номинальная емкость никогда не достигается, а при низких токах превышается.

Аналогично при заряде аккумуляторов, значение 1/10 C означает заряд током, численно равным десятой части заявленной емкости аккумулятора.

Методы заряда NiCd и NiMH аккумуляторов

Существующие методы можно разделить на 4 основные группы:

  • медленный заряд — заряд постоянным током величиной 0.1 С или 0.2 С в течение примерно 15 или 6-8 часов соответственно.
  • быстрый заряд — заряд постоянным током, равным 1/3 С в течение примерно 3-5 часов.
  • ускоренный или дельта V заряд — заряд с начальным током заряда, равным величине номинальной емкости аккумулятора, при котором постоянно измеряется напряжение на аккумулятора и заряд заканчивается после того, как аккумулятор полностью заряжен. Время заряда примерно час-полтора.
  • реверсивный заряд — импульсный метод заряда, при котором короткие импульсы разряда распределяются между длинными зарядными импульсами.

Сразу оговорюсь: разделение это достаточно условно и зависит от фирмы-изготовителя аккумуляторов. Подход к вопросу о заряде аккумуляторов примерно такой: фирма разрабатывает различные типы аккумуляторов под различные применения и устанавливает для каждого типа рекомендации и требования по наиболее благоприятным методам заряда. В результате одинаковые по внешнему виду (размерам) аккумуляторы (одиночные элементы) могут потребовать применения различных методов заряда. Иллюстрацией данного подхода могут служить материалы, размещенные на и .

Медленный метод заряда

При таком методе возможно несколько вариантов: заряд полупостоянным током и заряд постоянным током.

При заряде полупостоянным током начальное значение тока устанавливается примерно равным 1/10 С. По мере продолжения заряда это значение уменьшается. Время заряда примерно 15-16 часов. Практически метод реализуется зарядом через токозадающий резистор от источника постоянного напряжения (см. для NiCd аккумуляторов). Медленный заряд током в 1/10 C — обычно безопасен для любого аккумулятора.

При заряде постоянным током значение тока величиной 1/10 С поддерживается в течение всего времени заряда. (Рис.1)

Рисунок 1. Медленный метод заряда NiCd и NiMH аккумуляторов

Во время заряда наблюдается повышение напряжения на элементе аккумулятора. По достижении полного заряда и при перезаряде напряжение начинает уменьшаться.

Сокращение времени заряда в 2-2,5 раза возможно при увеличении тока до 0,2 С, но при этом необходимо ограничить время заряда 6-8 часами.

Метод быстрого заряда

Разновидностью медленного заряда является метод быстрого заряда, при котором используется ток заряда величиной от 0,3 до 1,0 C. Но при этом возможен перегрев аккумулятора, особенно при токах заряда, близких к 1 C. Для исключения перегрева и определения момента окончания заряда аккумулятора, в последний встраивается термопредохранитель и термодатчик. Термодатчик используется для измерения температуры, изменение которой рассматривается в качестве критерия для прекращения заряда. Дело в том, что при достижении полного заряда, температура элементов аккумулятора резко повышается. И когда она повысится на 10 градусов Цельсия и более по отношению к окружающей среде, заряд необходимо прекратить, или перейти в режим медленного заряда. При любом методе заряда в случае, если применяются большие токи заряда, дополнительно требуется предохранительный таймер.

Метод дельта V заряда

Это наилучший и, пожалуй, основной метод быстрого заряда NiCd и NiMH аккумуляторов для сотовых телефонов. Сущность метода заключается в измерении изменения напряжения на аккумуляторе для определения (фиксирования) момента полного заряда и необходимости его прекращения.

Если измерять напряжение на выводах аккумулятора во время заряда постоянным током, то можно заметить, что напряжение сначала медленно повышается, а в точке полного заряда будет кратковременно уменьшаться. Величина уменьшения небольшая, примерно 15-30 мВ на элемент для NiCd и 5-10 для NiMH, но явно выражена. Этот небольшой спад напряжения и принимается за критерий прекращения заряда. Кроме того, метод дельта V заряда почти всегда сопровождается измерением температуры, что обеспечивает дополнительный критерий оценки степени заряда аккумулятора (а для верности зарядные устройства для больших аккумуляторов высокой емкости обычно имеют кроме этого и таймеры безопасности).

Рисунок 2. Метод дельта V заряда NiCd и NiMH аккумуляторов

На рис.2 приведен график заряда с током величиной в 1 C. После достижения полного заряда, ток заряда уменьшается до 1/30 … 1/50 C для компенсации явления саморазряда аккумулятора.

Существуют электронные схемы, разработанные специально для реализации метода дельта V заряда. Например MAX712 и MAX713. Реализация заряда по этому методу сложнее и дороже, чем другие, но дает хорошо воспроизводимые результаты. В тоже время следует отметить, что в аккумуляторе с хотя бы одним плохим элементом из цепочки последовательно соединенных, метод дельта V заряда может не работать и привести к разрушению остальных элементов.

NiMH аккумуляторы имеют специфические проблемы с зарядом. Величина дельта V у них очень мала, и ее труднее обнаружить, чем в случае NiCd аккумуляторов. Поэтому NiMH аккумуляторы для сотовых телефонов имеют температурные датчики в качестве резервного средства для обнаружения момента полного заряда.

Другая проблема, возникающая при заряде по этому методу, заключается в том, что при использовании в автомобилях электрические помехи маскируют обнаружение дельта V, и телефоны в основном управляют зарядом по температуре. Это может привести к повреждению аккумулятора, поскольку в автомобиле телефон постоянно подключен и многократные запуски и остановки двигателя имеет место. Каждый раз, когда зажигание выключается на несколько минут и затем включается обратно, инициируется новый цикл заряда.

Реверсивный метод заряда

В анализаторах аккумуляторов Cadex 7000 [ , ] и CASP/2000L(H) используются реверсивные импульсные методы заряда, при котором короткие импульсы разряда распределяются между длинными зарядными импульсами. Считается, что такой метод заряда улучшает рекомбинацию газов, возникающих в процессе заряда, и позволяет проводить заряд большим током за меньшее время. Кроме того, восстанавливается площадь активной поверхности рабочего вещества аккумулятора, устраняя тем самым «эффект памяти».

На рис.3 схематично изображена временная диаграмма реверсивного метода заряда NiCd и NiMH аккумуляторов, реализованная в анализаторе Cadex 7000. Цифрой 1 обозначен нагрузочный (разрядный) импульс, а цифрой 2 — зарядный.

Рисунок 3. Реверсивный метод заряда NiCd и NiMH аккумуляторов

Величина обратного импульса нагрузки определяется в процентах от тока заряда в диапазоне от 5 до 12%. Оптимальное значение 9%.

Метод заряда литий-ионных (Li-ion) аккумуляторов

Для заряда Li-ion аккумуляторов используется метод «постоянное напряжение / постоянный ток», суть которого заключается в ограничении напряжения на аккумуляторе. В этом он подобен методу заряда свинцово-кислотных аккумуляторов (SLA). Основные отличия заключаются в том, что для Li-ion аккумуляторов — выше напряжение на элемент (номинальное напряжение элемента 3,6 В против 2 В для SLA), более жесткий допуск на это напряжение (±0,05 В) и отсутствие медленного подзаряда по окончании полного заряда.

  • максимальное напряжение заряда 4,2 или 4,1 вольта в зависимости от модели аккумулятора;
  • напряжение окончания разряда 3,0 вольта;
  • рекомендуемый ток заряда 0,7 С, ток разряда (нагрузки) — 1 С и меньше;
  • если напряжение на аккумуляторе менее 2,9 вольта, то рекомендуемый ток заряда 0,1 С;
  • глубокий разряд может привести к повреждению аккумулятора (т. е. должно соблюдаться общее правило — Li-ion аккумуляторы любят скорее находиться в заряженном состоянии, чем в разряженном, и заряжать их можно в любое время, не дожидаясь разряда);
  • по мере приближения напряжения на аккумуляторе к максимальному значению, ток заряда уменьшается. Окончание разряда должно происходить при уменьшении тока заряда до (0,1 … 0,07) С в зависимости от модели аккумулятора. После окончания заряда ток заряда прекращается полностью.
  • диапазон температур при заряде от 0 до 45 градусов Цельсия, при разряде от минус 10 до 60 градусов Цельсия.

Приведенные выше данные могут отличаться в ту или иную сторону для аккумуляторов других производителей.

В то время как для SLA аккумуляторов допустима некоторая гибкость в установке значения напряжения прекращения заряда, для Li-ion аккумуляторов изготовители очень строго подходят к выбору этого напряжения. Порог напряжения прекращения заряда для Li-ion аккумуляторов 4,10 В или 4,20 В, допуск на установку для обоих типов ±0,05 В на элемент. Для вновь разрабатываемых Li-ion аккумуляторов, вероятно, будут определены другие значения этого напряжения. Следовательно, зарядные устройства для них должны быть адаптированы к требуемому напряжению заряда.

Более высокое значение порога напряжения обеспечивает и большее значение емкости, поэтому в интересах изготовителя выбрать максимально возможный порог напряжения без нарушения безопасности. Однако на величину этого порога влияет температура аккумулятора, и его устанавливают достаточно низким для того, чтобы допустить повышенную температуру при заряде.

В зарядных устройствах и анализаторах аккумуляторов, которые позволяют изменять значение этого порога напряжения, его правильная установка должна соблюдаться при обслуживании любых аккумуляторов Li-ion типа. Однако большинство изготовителей не обозначают тип Li-ion аккумулятора и напряжения окончания заряда. И, если напряжение установлено неправильно, то аккумулятор с более высоким напряжением выдаст более низкое значение емкости, а аккумулятор с более низким — будет немного перезаряжен. При умеренной температуре повреждения аккумуляторов не происходит.

Именно в этом, как правило, и заключается причина того, что аккумулятор, заряженный, например, в «родном» телефоне, работает меньшее или большее время, чем этот же аккумулятор, заряженный в настольном зарядном устройстве неизвестного производителя.

Повышение температуры аккумулятора при заряде незначительно (от 2 до 8 градусов в зависимости от типа и производителя)

Вмешательство потребителя в любое Li-ion зарядное устройство не рекомендуется.

Медленный подзаряд по окончании заряда, характерный для аккумуляторов на основе никеля, не применяется, потому что Li-ion аккумулятор не терпит перезаряда. Медленный заряд может вызвать металлизацию лития и привести к разрушению элемента. Вместо этого время от времени для компенсации маленького саморазряда аккумулятора из-за небольшого тока потребления устройством защиты может применяться кратковременный заряд.

Li-ion аккумуляторы содержат несколько встроенных устройств защиты: плавкий предохранитель, термопредохранитель и внутреннюю схему управления, которая отключает аккумулятор в нижней и верхней точках напряжения разряда и заряда.

Меры предосторожности: Никогда не пытайтесь заряжать литиевые батарейки! Попытка зарядить эти аккумуляторы может вызывать взрыв и воспламенение, которые распространяют ядовитые вещества и могут причинить повреждения оборудованию.

Меры безопасности: В случае разрушения литий-ионного аккумулятора, утечки электролита и попадания его на кожу или глаза, немедленно промойте эти места проточной водой. Если электролит попал в глаза, промойте их проточной водой в течение 15 минут и обратитесь к врачу.

При написании статьи использованы материалы, любезно предоставленные г-ном Isidor Buchmann, основателем и главой Канадской компании Cadex Electronics Inc. [ — Аккумуляторы для мобильных устройств и портативных компьютеров. Анализаторы аккумуляторов.

  • Аккумуляторы для мобильных устройств. Устройство и основные параметры.
  • Аккумуляторы для мобильных устройств — оценка состояния.
  • Аккумуляторы для мобильных устройств — разновидности, сравнительные характеристики.


  • Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png